Blog Archives
Video Games and Spatial Creativity
Jonathan Wai wrote a very compelling article on “Why We Need To Value Students’ Spatial Creativity”. He reminds us of the spatially creative inventors and geniuses who have contributed so much to to science and industry. Then he reveals how schools neglects the development of spacial creativity. He makes clear connections between the video games, the development of STEM (Science, Technology, Engineering, and Math) skills and spacial creativity;
“The research is clear that spatial skill is important for STEM careers, and perhaps we can even enhance spatial skill to help more people join the STEM fields. What we need is research directed at understanding the best ways to develop the talent of students who are high spatial, but relatively lower math/verbal. Perhaps spatial video games and online learning coupled with hands on interventions might help these students.”
Wai also writes that;
“Spatial thinking “finds meaning in the shape, size, orientation, location, direction or trajectory, of objects,” and their relative positions, and “uses the properties of space as a vehicle for structuring problems, for finding answers, and for expressing solutions.” Spatial skill can be measured through reliable and valid paper-and-pencil tests—primarily ones that assess three dimensional mental visualization and rotation. Read more about examples of items that measure spatial skill here.
But despite the value of these kinds of skills, spatially talented students are, by and large, neglected. Nearly a century ago, a talent search conducted by Lewis Terman used the highly verbal Stanford-Binet in an attempt to discover the brightest kids in California. This test identified a boy named Richard Nixon who would eventually become the U.S. president, but two others would miss the cut likely because the Stanford-Binet did not include a spatial test: William Shockley and Luis Alvarez, who would go on to become famous physicists and win the Nobel Prize.
Today talent searches often use the SAT and ACT which include math, verbal, and writing sections, but do not include a spatial measure. All of the physicists described above (and Tesla who could do integral calculus in his head) would likely qualify today at least on the math section, and Edison would likely have qualified on the verbal section due to his early love of reading. However, there are many students who have high spatial talent but relatively lower math and verbal talent who are likely missed by modern talent searches and therefore fail to have their talent developed to the extent it could. Also, because colleges use the SAT and ACT for selecting students, many high spatial students likely do not make it onto college campuses.
Nearly every standardized test given to students today is heavily verbal and mathematical. Students who have the high spatial and lower math/verbal profile are therefore missed in nearly every school test and their talent likely goes missed, and thus under-developed. What’s more, spatially talented people are often less verbally fluent, and unlikely to be very vocal. Finally, teachers are unlikely to have a high spatial profile themselves (and typically have the inverted profile of high verbal and lower math/spatial), and although they probably do not intend to, they’re more likely to miss seeing talent in students who are not very much like themselves.”
One topic that Wai did not address is the effect of the gender imbalance, in teaching, on the neglect of spacial creativity in US. Schools. When one gender so dominates the teaching profession, we should expect that certain aspects of creativity will necessarily be neglected. Gender diversity is better for all professions. Gender diversity in the teaching profession would go a long way toward fostering the development of spacial creativity in students.
To read the full article by Jonathan Wai on Mind/Shift click here;
http://blogs.kqed.org/mindshift/2013/07/why-we-need-to-value-spatial-creativity/